Syntheses and Properties of Some Deeply Coloured Dichroic Anthraquinone Dyes

Shigeo Yasui

Nippon Kankoh-Shikiso Kenkyusho Co. Ltd, Nishiki, Fujita, Okayama 701-02, Japan

Masaru Matsuoka* & Teijiro Kitao

Department of Applied Chemistry, University of Osaka Prefecture, Sakai, Osaka 591, Japan

(Received 1 June 1988; accepted 13 July 1988)

ABSTRACT

The syntheses of some aryl-1,5-diamino-4,8-dihydroxyanthraquinone dyes is described and their properties are discussed on the basis of colour–structure relationships, dichroism and their solubility in liquid crystals. The PPP–MO calculated results agreed well with the observed $\lambda_{\rm max}$ values. 2-Aryl-1,5-dihydroxy-4-arylamino-8-aminoanthraquinones had better dichroism and improved solubility compared with their 8-arylamino-4-amino analogues. 2-Aryl-1,5-dihydroxy-4,8-bis(arylamino)anthraquinones also had satisfactory dichroism and solubility. It was found that the presence of 2-aryl- and 4-arylamino groups in deeply coloured anthraquinone dyes resulted in a favourable orientation of the dye molecules in liquid crystals, producing good dichroism and improved solubility, and such compounds can be used practically as deepblue dichroic dyes.

1 INTRODUCTION

Some anthraquinone disperse dyes have been developed as dichroic dyes for the guest-host (GH) and twisted nematic (TN) mode liquid-crystal displays.

* To whom correspondence should be addressed.

Thus a series of red 1,5-bis(arylamino)anthraquinones and blue 1-arylamino-4-hydroxyanthraquinones have been prepared for use as dichroic dyes and have excellent photochemical stability. These dyes which have one or two aryl groups as a rigid substituent at the α -position of the anthraquinone system, give a high dichroic ratio. β -Aryl-1,5-diamino-4,8-dihydroxyanthraquinones were later synthesized as deep-blue dyes with an improved dichroic ratio. The development of β -arylanthraquinones for use as deep-coloured dichroic dyes of potential practical use is thus indicated.

In this present paper, the syntheses and properties of some α - and/or β -aryl-1,5-diamino-4,8-dihydroxyanthraquinone dyes are discussed on the basis of their colour-structure relationship, dichroism and solubility in liquid crystals.

2 RESULTS AND DISCUSSION

2.1 Absorption spectra

The observed absorption spectra together with the calculated results are summarized in Table 1. The value of $\Delta \lambda_{\rm obs-calc}$ which indicates the difference between the observed and calculated $\lambda_{\rm max}$ values, is in the range 30–40 nm. The MO calculation results are in good agreement with the observed values.

The observed longer-wavelength λ_{max} values were in the order 3a > 3b > 3c > 3f > 3e > 3d, and the calculated values followed a similar

Dye no.		λ_{\max}	(nm) ^a	$\Delta \lambda(nm)$			
	Calc.	Obs.	GR^b	ZLI^c	$\Delta \lambda_1^d$	Δλ2ε	$\varepsilon \times 10^{-4a}$
3a	650	690	711	701	40	21	3.46
3b	618	656	675	669	38	19	2.88
3c	615	655	675	669	40	20	2.82
3d	583	613	623	619	30	10	1.73
3e	583	619	643	638	38	24	2.65
3f	589	621	644	640	33	23	2.67

TABLE 1
Absorption Spectra of Anthraquinone Dyes 3

a measured in chloroform.

^b GR-41 (biphenyl-type mixed LC).

^c ZLI-1565 (phenylcyclohexane-type mixed LC).

 $^{^{}d}$ $\Delta \lambda_1 = \lambda_{\text{obs.}} - \lambda_{\text{calc.}}$

 $[^]e \Delta \lambda_2 = \lambda_{GR-41} - \lambda_{obs}.$

order, viz. 3a > 3b > 3c > 3f > 3e = 3d. Introduction of an additional α -arylamino group into the anthraquinone dyes produced a large bathochromic shift (about 35 nm) in chloroform, as shown by comparison of 3a and 3b and of 3c and 3b, with 3e and 3f. An additional α -amino group also produced a 42 nm bathochromic shift, as in 3c relative to 3d.

The observed λ_{max} increased in the order GR-41 > ZLI-1565 > CHCl₃. Differences of λ_{max} in GR-41 and CHCl₃ were in the range 19–24 nm, except for 3d (10 nm). Dye 3c absorbed over the region 520–750 nm and 3a in the

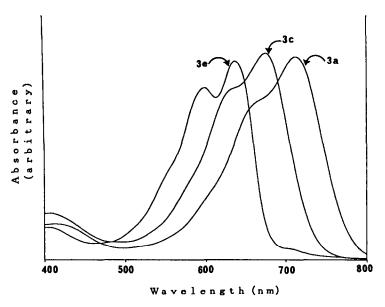


Fig. 1. Absorption spectra of dyes 3a, 3c and 3e in GR-41.

range 520–800 nm in GR-41 as shown in Fig. 1. Dye 3a also absorbed at longer wavelength than the previously reported 3 3g (Fig. 2), and its overall absorption in the longer-wavelength range makes it more favourable in obtaining a black colour in liquid crystal displays.

A black-coloured liquid crystal, obtained by mixing dyes 3a or 3c with three other components, absorbed over the whole visible region as shown in Fig. 3, and remained black for different types of illumination. This dye mixture is thus able to supply the GH display devices with improved quality, as pointed out by Scheuble et al.⁴

The ε values of the dyes increased in the order 3a > 3b > 3c > 3f > 3e > 3d, and this order is in good agreement with the order of the transition moment (M) of the dyes as shown in Table 2.

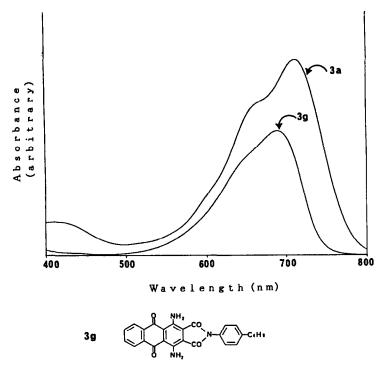


Fig. 2. Absorption spectra of dyes 3a and 3g in GR-41.

2.2 Dichroism

One of the parameters which influences the dichroism of a dye is the angle (α) between the direction of the transition moment and the long axis of the molecule and a smaller value for this parameter has been related to a higher dichroic ratio (D). ^{5,6} The calculated α -values quantitatively were in accord with this relationship for the structural isomeric dyes 3e and 3f. Thus the smaller α -value (0.86°) of 3e gave a larger D-value (9.27) in comparison with 3f ($\alpha = 5.7^{\circ}$, D = 7.22). However, in other dyes, changes in the orientation of the substituents was found to change the D-value slightly, and the smaller differences in the α -value were not relatable to the D-values. Thus, with the isomeric dyes 3b and 3c, the α -value of 3c (9.1°) is larger than that of 3b (8.5°), but the D-value of 3c (9.45) is larger than that of 3b (8.27). The solubility of 3c is much higher than that of 3b in GR-41, and the solubility factor must therefore be taken into account in considerations of the D-value.

On the other hand, 3d has a poor D-value (6.73) in comparison with 3c (9.45), which has an additional amino group at the 8-position. The difference in α -values for these two dyes is not large (3c 9.1°; 3d 11.6°), and the 8-amino group in 3c plays a significant role in giving better dichroism and solubility

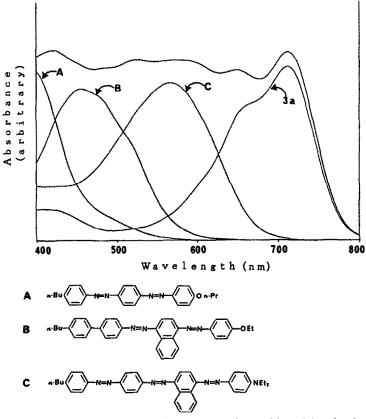


Fig. 3. Absorption spectra of a black colour display obtained by mixing dye 3a and three other components (A-C) in GR-41.

TABLE 2
Some properties of Dichroic Dyes 3

Dye no.	D^a	M^b	$\alpha(deg.)^c$	Solubility (wt%)d		
				GR	ZLI	
3a	8.17	2:41	14.2	2.97	1.36	
3b	8.27	2.22	8-5	0.70	0.16	
3c	9.45	2.15	9-1	2.38	0.93	
3d	6.73	1.88	11.6	1.83	0.87	
3e	9.27	2.05	0.86	3.91	1.06	
3f	7.22	2.10	5.72	3.11	1.40	

[&]quot; Dichroic ratio in GR-41.

^b Calculated transition moment.

^c Calculated angle.

d Measured at 20°C.

in GR-41. The *D*-value is thus influenced by the orientation of the dye in liquid crystals and also by other factors such as solubility, molecular length and transition moment.

2.3 Solubility in liquid crystals

The solubility of the dyes in liquid crystals decreased in the order 3a > 3c > 3d > 3b as shown in Table 2. Dye 3c had better solubility than the isomeric 3b, and sufficient solubility for practical applications. Dye 3a had better solubility than 3b despite the presence of an additional aryl group at the 4-position. This suggests that the presence of a 2-aryl group and 4-arylamino substitution imparts better solubility than that resultant from 2-aryl and 8-arylamino substitution. The dyes also have better solubility in GR-41 in comparison with ZLI-1565. This may be caused by the difference in affinity of the dye with the liquid crystal, the biphenyl type (GR-41) having better affinity than the phenylcyclohexane type (ZLI-1565) due to the larger π -conjugated system enhancing van der Waals interaction with the π -conjugated dye molecules. Dye 3a has better solubility than dye 3g, which has been previously prepared as a deep-blue dichroic dye for practical use. A comparison of properties between 3a and 3g is shown in Table 3.

TABLE 3
Comparison of Dichroic Property and Solubility of Dyes 3a and 3g

Dye no.	$\lambda_{\max}(nm)$ $GR-41$	$\varepsilon \times 10^{-4}$	D GR-41	Solubility (wt%) (20°C)		
	UN-41		UN-41	GR-41	ZLI-1565	
3a	711	3.46	8.17	2.97	1.36	
3g	690	1.79	9.5ª	0.75	0.1	

^a Quoted in Ref. 3.

2.4 NMR spectra of dyes

The reaction of 1,5-dihydroxy-4,8-dinitroanthraquinone 1 with alkoxybenzenes in sulphuric acid in the presence of boric acid gave 2-(4-alkoxyphenyl)-4-amino-1,5-dihydroxy-8-nitroanthraquinone 2b with 2a,⁷ but 2c, the isomer of 2b, was also obtained from the reaction mixture as shown in Scheme 1. The alkoxyphenyl group was introduced at the 2-position.⁸ The identity of dyes 2b and 2c was confirmed by their ¹H-NMR

Scheme 1. Syntheses of dyes 2 and 3.

Ö HZ

NH2

ЮН

Fig. 4. Identification of isomeric dyes 2b and 2c (R = Bu) by means of their ¹H-NMR spectra.

spectra, as shown in Fig. 4. Deamination of the 4-amino group of **2b** gave **2b-1**, followed by the reduction of the 8-nitro group giving **2b-2**. Arylamination at the 8-nitro group of **2b** afforded **3b**. Similar reactions of **2c** gave **2c-1**, **2c-2** and **3c**, respectively. Dyes with similar structures were identified by means of their ¹H-NMR spectra (270 MHz) in addition to their elemental analyses and infrared spectra. The ¹H-NMR spectra and the results of elemental analysis of dyes are summarized in Tables 4 and 5, respectively.

Dye no.	3H		4Н		6H		7 H		8H	
	δ^a	J^b	δ	J	δ	J	δ	J	δ	J
2b	7·46 (s) ^c				7·46 (d)	9	8·07 (d)	9		
2b-1	7·85 (d)	9	7·95 (d)	9	7·60 (d)	9	8·13 (d)	9		
2b-2	7·79 (d)	8	7·83 (d)	8	7·39 (d)	9	7·32 (d)	9		
3b	7·25 (s)		()		7·48 (d)	9	7·29 (d)	9		
2c	8·12 (s)				7·45 (d)	9	7·37 (d)	9		
2c-1	8·23 (s)				7·48 (d)	9	7·85 (m)		7·85 (m)	
2c-2	7·42 (s)				7·36 (d)	9	7·75 (dd)		7·82 (d)	9
3c	7·41 (s)				7·30 (d)	9	7·23 (d)	9	` ,	

TABLE 4

¹H-NMR Spectral Data for Anthraquinone Nucleus in Dyes 2 and 3

TABLE 5
Characterization Data for Dyes 2 and 3

Dye no.	Molecular	Mol. wt.	<i>M.p.</i> (° <i>C</i>) -	Analysis: Obs. (calc.) %			
	formula			C	Н	N	
2a	C ₂₄ H ₁₈ N ₂ O ₉	478	234	60.36 (60.25)	3.89 (3.77)	5.65 (5.86)	
2b	$C_{24}H_{20}N_2O_7$	448	208-209	64.93 (64.29)	4.35 (4.46)	6.42 (6.25)	
2b-1	$C_{24}H_{19}NO_7$	433	209	66.99 (66.51)	4.26 (4.39)	3.24 (3.23)	
2b-2	$C_{24}H_{21}NO_5$	403	179-180	71.28 (71.46)	5.12 (5.21)	3.47 (3.47)	
2c	$C_{24}H_{20}N_2O_7$	448	221-222	64.11 (64.29)	4.28 (4.46)	5.50 (6.25)	
2c-1	$C_{24}H_{19}NO_7$	433	188-190	66-85 (66-51)	4.24 (4.39)	3.25 (3.23)	
2c-2	$C_{24}H_{21}NO_5$	403	174-175	71-22 (71-46)	4.97 (5.21)	3.82 (3.47)	
3a	$C_{44}H_{46}N_2O_5$	682	126-127	77.95 (77.42)	7.22 (6.74)	3.88 (4.11)	
3 b	$C_{34}H_{34}N_2O_5$	550	219-220	74.80 (74.18)	6.15 (6.18)	5.41 (5.09)	
3c	$C_{34}H_{34}N_2O_5$	550	170-171	74.80 (74.18)	6.21 (6.18)	5.37 (5.09)	
3d	$C_{34}H_{33}NO_5$	535	129	77.12 (76.26)	6.67 (6.17)	2.45 (2.62)	
3e	$C_{27}H_{28}N_2O_5$	460	225-226	70-41 (70-43)	6.07 (6.09)	5.75 (6.09)	
3f	$C_{27}H_{28}N_2O_5$	460	186-187	70-78 (70-43)	6.07 (6.09)	6.12 (6.09)	

^a Chemical shifts (ppm).

^b Coupling constants (Hz).

^c Abbreviations: s, singlet; d, doublet; dd, double doublet, m, multiplet.

3 EXPERIMENTAL

All melting points are uncorrected. The absorption spectra were measured in chloroform at a concentration of 2×10^{-5} mol litre⁻¹ using a Hitachi U-3400 spectrophotometer. Elemental analyses were recorded with a Yanaco CHN recorder MT-2. ¹H-NMR spectra were recorded with a Nippon Denshi JNM-GX-270. Dichroic ratios were measured using a 9- μ m cell in which GR-41 (Chisso Co. Ltd) was aligned homogeneously. The measurement was made at 20°C. The solubilities were determined spectrophotometrically at 20°C. The modified PPP-MO calculations were carried out by the method described previously.⁹

The dyes used were synthesized in Nippon Kankoh-Shikiso Kenkyusho Co. Ltd and purified by column chromatography on silica gel using chloroform as eluant followed by recrystallization. Dye 2 was synthesized by the method described previously^{7,10} and dye 3 by the procedure outlined in Ref. 11. The synthetic routes are shown in Scheme 1.

3.1 Materials

1,5-Dihydroxy-4,8-dinitroanthraquinone 1 was commercial grade material and was used without further purification.

3.2 Separation of dyes 2a, 2b and 2c

The reaction mixtures, which contained three components, were separated by column chromatography on silica gel using chloroform as eluant. The first dye to be eluted was 2a, followed by 2b, and 2c. The results of elemental analysis were consistent with the theoretical values as shown in Table 5.

3.3 Synthesis of dye 2b-1

A suspension of dye **2b** (4·48 g, 0·01 mol) in a mixture of acetic acid (30 ml) and propionic acid (10 ml) was added portionwise with stirring at 0–10°C to nitrosylsulphuric acid (20 ml) prepared by the method described in Ref. 12. The mixture was stirred at 20°C for 3 h, and then poured into cooled diethyl ether (500 ml), and the separated diazonium salt was filtered off. It was dissolved in dimethylformamide (100 ml) and the solution was heated with stirring at 80°C for 30 min, and then poured into water (1 litre). The resultant solid was filtered, washed with water, dried, and purified by column chromatography, followed by recrystallization from ethyl acetate to give **2b-1**.

3.4 Synthesis of dye 2b-2

A solution of 70% sodium hydrosulfide (4·8 g) in water (40 ml) was added to the suspension of dye **2b-1** (4·33 g, 0·01 mol) in ethanol (80 ml) and the mixture was refluxed for 2 h with stirring, and then poured into water (800 ml). The solid was filtered, washed with water and then with methanol, dried and purified by column chromatography, followed by recrystallization from ethyl acetate to give **2b-2**.

3.5 Synthesis of dye 3b

A solution of dye **2b** (4.48 g, 0.01 mol) and 4-butylaniline (4.47 g, 0.03 mol) in nitrobenzene (60 ml) was heated at 200°C for 20 h with stirring. Nitrobenzene was distilled off with steam and the separated product was filtered, and purified by column chromatography, followed by recrystallization from ethyl acetate to give **3b**.

Dyes 2c-1, 2c-2 and 3c were synthesized by similar methods.

ACKNOWLEDGEMENTS

The authors express their thanks to Mr M. Ono and Mr Y. Kato of Nippon Kankoh-Shikiso Kenkyusho Co. Ltd for their assistance in syntheses and spectra measurements.

REFERENCES

- 1. Pellatt, M. G., Roe, I. H. C. & Constant, J., Mol. Cryst. Liq. Cryst., 59 (1980) 299.
- 2. Cognard, J. & Phan, T. H., Mol. Cryst. Liq. Cryst., 70 (1981) 1279.
- Seki, H., Shishido, C., Uchida, T. & Wada, M., Mol. Cryst. Liq. Cryst., 66 (1981) 209.
- 4. Scheuble, B. S., Weber, G., Pohl, L. & Jubb, R. E., Proc. SID, 25 (1984), 25.
- Osman, M. A., Pietronero, L., Scheffer, T. J. & Zeller, H. R., J. Chem. Phys., 74 (1981) 5377.
- 6. Griffiths, J., Shikizai Kyokai-shi, 59 (1986) 485.
- 7. Wunderlich, K., Bien, H.-S. & Baumann, F. French Patent 1 345 377 (1963).
- 8. Pandhare, E. D., Patil, V. B., Ramarao, A. V. & Venkataraman, K., *Indian J. Chem.*, 9 (1971) 1060.
- Kogo, Y., Kikuchi, H., Matsuoka, M. & Kitao, T., J. Soc. Dyers Colour., 96 (1980) 475.
- 10. Straley, J. M., *The Chemistry of Synthetic Dyes*, Vol. 3, Venkataraman, K. (Ed.), Academic Press, New York, 1970, p. 407.
- 11. Straley, J. M. The Chemistry of Synthetic Dyes, Vol. 3, Venkataraman, K. (Ed.), Academic Press, New York, 1970, p. 403.
- 12. Eastman Kodak, US Patent 2659719 (1954).